Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Learning Enabled by Multiscale Deep Neural Network Inversion
Deep Neural Networks (DNNs) provide state-of-the-art solutions in several difficult machine perceptual tasks. However, their performance relies on the availability of a large set of labeled training data, which limits the breadth of their applicability. Hence, there is a need for new semisupervised learning methods for DNNs that can leverage both (a small amount of) labeled and unlabeled traini...
متن کاملTopometric Localization with Deep Learning
Compared to LiDAR-based localization methods, which provide high accuracy but rely on expensive sensors, visual localization approaches only require a camera and thus are more cost-effective while their accuracy and reliability typically is inferior to LiDAR-based methods. In this work, we propose a vision-based localization approach that learns from LiDAR-based localization methods by using th...
متن کاملAcquiring Target Stacking Skills by Goal-Parameterized Deep Reinforcement Learning
Understanding physical phenomena is a key component of human intelligence and enables physical interaction with previously unseen environments. In this paper, we study how an artificial agent can autonomously acquire this intuition through interaction with the environment. We created a synthetic block stacking environment with physics simulation in which the agent can learn a policy endto-end t...
متن کاملAcquiring Target Stacking Skills by Goal- Parameterized Deep Reinforcement Learning
Understanding physical phenomena is a key component of human intelligence and enables physical interaction with previously unseen environments. In this paper, we study how an artificial agent can autonomously acquire this intuition through interaction with the environment. We created a synthetic block stacking environment with physics simulation in which the agent can learn a policy endto-end t...
متن کاملAdaptive Deep Learning through Visual Domain Localization
A commercial robot, trained by its manufacturer to recognize a predefined number and type of objects, might be used in many settings, that will in general differ in their illumination conditions, background, type and degree of clutter, and so on. Recent computer vision works tackle this generalization issue through domain adaptation methods, assuming as source the visual domain where the system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Radiation Oncology*Biology*Physics
سال: 2019
ISSN: 0360-3016
DOI: 10.1016/j.ijrobp.2019.05.071